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2 T. Nordin and A. TolmachAlthough the speed and cunning of search algorithms have improved, the newalgorithms are more complicated and harder to understand, even though they areoften combinations of simpler, standard algorithms. The problem is exacerbated bythe fact that most algorithms are described by large, monolithic chunks of pseudo-code or C code. Although it is recognized that most problems bene�t from a tailor-made solution involving a combination of existing generic and domain-speci�c algo-rithms, modularity has not been a strong point of most recent research. It is di�cultto reuse code except via cut-and-paste. Moreover, to prove these algorithms correctwe must resort to complex reasoning about their dynamic behavior. For example,although most of these search algorithms are conceived as varieties of \tree search,"no actual tree data structures appear in their implementations; trees are presentonly virtually, in the form of recursive routine activation histories. Perhaps for thisreason, even widely-used and well-studied algorithms often lack correctness proofs.In the world of lazy functional programming, the idea of implementing searchalgorithms using modular techniques is a commonplace. The classic paper of Hughes(1989) and the textbook of Bird & Wadler (1988) both give examples of searchalgorithms in which generation and testing of candidate solutions are separated intodistinct phases, glued together using an explicit, lazy, intermediate data structure.This \generate-and-test" paradigm makes essential use of laziness to synchronizethe two functions (really coroutines) in such a way that we never need to store muchof the (exponential-sized) intermediate data structure at any one time. In general,the modular lazy approach can lead to algorithms that are much simpler to read,write, and modify than their imperative counterparts. However, the algorithmsdescribed in these sources are fairly elementary.In this paper we present a lazy declarative framework for solving one importantclass of combinatorial search problems, namely constraint satisfaction problems(CSPs) over �nite domains. This class of problems includes graph coloring andmatching, scene labeling in computer vision, temporal reasoning, resource allocationin planning and scheduling, and many others (Tsang, 1993). For simplicity, werestrict our attention to binary CSPs, but this restriction is not fundamental to ourgeneral approach. Our framework is based on explicit, lazy, tree structures, in whicheach tree node represents a state in the search space; problem solutions correspondto leaf nodes that meet certain criteria. Nodes can be labeled with conict sets,which record constraint violations in the corresponding states; many algorithmsuse these sets to prune subtrees that cannot contribute a solution.Our code is written in Haskell 98 (Peyton Jones & Hughes, 1999). We providea small library of separate functions for generating, labeling, rearranging, prun-ing, and collecting solutions from trees. In particular, we describe a generic searchalgorithm, parameterized by a labeling function, and show that a variety of stan-dard imperative CSP algorithms, including simple backtracking, conict-directedbackjumping (Prosser, 1993a), backmarking (Gaschnig, 1977), and minimal forwardchecking (Dent & Mercer, 1994), can be obtained by making a suitable choice oflabeling function. A further class of algorithms based on dynamic variable order-ing (Kumar, 1992) can be obtained via a small change to the generating function.Using an explicit representation of the search tree allows us to focus on the data



Modular Lazy Search for CSPs 3associated with each search state and gives us new insights into more e�cient algo-rithms. As in other recent work on functional algorithms and data structures (King& Launchbury, 1995; Okasaki, 1998), we found that recasting imperative algorithmsinto a declarative lazy setting casts new light on the fundamental algorithmic ideas.In particular, it is easy to see how to combine our algorithms, simply by composingtheir labeling functions, and to see that the result will be correct.Since the whole point of improving search algorithms is to be able to solve largerproblems faster, we must obviously be concerned with the performance of our lazyalgorithms. Our experiments show that lazy, modular Haskell code is an orderof magnitude slower than a direct recursive implementation in Haskell; moreover,even the latter can be several times slower than the equivalent C code. However,since search times often explode exponentially, even slowdowns of one or two or-ders of magnitude have little e�ect on the size of problem we can solve within a�xed time bound. All our algorithms and their combinations are fast enough forexperiments that have been interesting to researchers in the past; for example weare able to reproduce parts of the comparative tables assembled by Bacchus andvan Run (1995) and Kondrak (1994). More importantly, our implementations arefast enough to allow experimentation with di�erent combinations of algorithms onproblems of realistic size. For such experiments, CPU time is often not an idealcomparison metric, since it is di�cult to compare times obtained from di�erent im-plementations on di�erent systems. A widely used alternative metric is the numberof consistency checks performed by the algorithm, and we adopt this metric here.Although the generate-and-test algorithms we discuss in this paper are widelyapplicable, they are too low-level to take advantage of the speci�c characteristics ofmany real-world problems, which are often better handled by explicit constraint ma-nipulation. For example, our framework could be used directly to solve schedulingproblems over discrete ordered domains by brute-force search, but it would typi-cally be much more e�cient to represent scheduling constraints using intervals andto apply interval-based reasoning to reduce the domains of variables before resort-ing to generate-and-test. Thus, a more comprehensive system for solving constraintproblems might include our framework as just one component among several.The paper is organized as follows. Section 2 formalizes our problem domain andSection 3 gives a Haskell speci�cation for it. Section 4 describes simple tree-basedbacktracking search. Section 5 introduces conict sets and our generic search algo-rithm, and recasts backtracking search in that framework. Section 6 briey discussessearch heuristics based on value reordering. Section 7 describes how the conict setframework can be used to support more intelligent backtracking. Sections 8 and 9describe more sophisticated algorithms based on the idea of caching consistencychecks, and Section 10 discusses how algorithms can be combined. Section 11 ex-tends these ideas to dynamic variable ordering. Section 12 summarizes performanceresults, Section 13 describes related work, and Section 14 concludes.The reader is assumed to have a working knowledge of lazy functional program-ming and a reading knowledge of Haskell, although certain Haskell subtleties will beexplained as they arise. All the code examples in this paper and additional requiredsupport code are available from the journal website.



4 T. Nordin and A. Tolmach2 Binary Constraint Satisfaction ProblemsDe�nition 1A binary constraint satisfaction problem is described by� a set of variables V = fv1; v2; : : : ; vmg;� for each variable vi, a �nite set Di of possible values (its domain); and� for each pair of distinct variables vi and vj , i < j, a binary relation Rij �Di �Dj , representing a constraint on the values that vi and vj can take onsimultaneously.An assignment vi:=xi associates a variable vi to some value xi 2 Di. A state is aset of assignments, with at most one assignment per variable. A state S0 extendsstate S if it contains all the assignments of S together with one or more additionalassignments.A pair of assignments vi:=xi and vj:=xj , i < j, satis�es the corresponding con-straint Rij if (xi; xj) 2 Rij . A state is consistent if every pair of distinct assignmentsin the state satis�es the corresponding constraint; otherwise it is inconsistent.A state is complete if it assigns all the variables of V ; otherwise it is partial. Asolution to a CSP is any complete consistent state.This de�nition of binary CSPs can be generalized by replacing the binary relationsby n-ary relations. Although our general approach should extend to this broaderclass of problems, the algorithms in this paper rely heavily on the binary natureof the constraints. In any case, an n-ary CSP can always be encoded (though notnecessarily e�ciently) as an equivalent binary CSP (Stergiou & Walsh, 1999).To simplify the presentation in this paper, we assume that all domains have thesame size n and that their values are represented by integers in the set f1; 2; : : : ; ng;these limitations could be trivially removed.A naive approach to solving a CSP is to enumerate all possible complete statesand then check each in turn for consistency. In a binary CSP, consistency of a statecan be determined by performing consistency checks on each pair of assignments inthe state, until an inconsistent pair of variables is detected, or all pairs have beenchecked. Following the conventions of the search literature, we use the numberof consistency checks as a key measure of algorithm e�ciency, although it is notnecessarily an accurate predictor of execution time.For some problems we want to calculate all solutions, but for others we only wishto �nd one solution as quickly as possible. All the search algorithms in this paperare suited to either situation; the heuristics in Section 6 are speci�cally designed tospeed up the search for a �rst solution.3 CSPs in HaskellFigure 1 gives a Haskell framework for describing CSP problems. An assignmentis constructed using the in�x constructor :=. Variables and values are numberedbeginning from 1. A CSP is modeled as a Haskell record containing the number ofvariables, vars, the size of their domain, vals, and a constraint relation, rel; many



Modular Lazy Search for CSPs 5type Var = Inttype Value = Intdata Assignment = Var := Valuevar :: Assignment -> Varvar (var := _) = varvalue :: Assignment -> Valuevalue (_ := val) = valtype Relation = Assignment -> Assignment -> Booldata CSP = CSP fvars, vals :: Int, rel :: Relationgdata State = State ([Assignment],[Var])assignments :: State -> [Assignment]assignments (State(as,_)) = asunassigned :: State -> [Var]unassigned (State(_,us)) = usemptyState :: CSP -> StateemptyState CSPfvars=varsg = State([],[1..vars])isEmptyState :: State -> BoolisEmptyState = null . assignmentsextensions :: CSP -> State -> [State]extensions CSPfvals=valsg (State(as,nextvar:rest)) =[State((nextvar := val):as,rest) | val <- [1..vals]]extensions _ (State(_,[])) = []newNextVar :: State -> Var -> StatenewNextVar s@(State(as,[])) _ = snewNextVar (State(as,us)) next = State(as,next:delete next us)complete :: State -> Boolcomplete = null . unassignedlastAssignment :: State -> AssignmentlastAssignment = head . assignmentsnextVar :: State -> VarnextVar = head . unassignedFig. 1. A formulation of CSPs in Haskell.of our functions take this record as a parameter.1 We represent the relation as anoracle function taking two assignments and returning True i� the assignments obeythe relevant constraint. For convenience, we require that the oracle function be sym-metric (i.e., 8a; b:rel a b = rel b a), so that its two arguments can be passed in1 Functions often reference only some of these parameters; in Haskell, it is possible to patternmatch against a subset of the �elds of a record, as in, for example, the emptyState function.This function also illustrates that the same identi�er (here vars) can be used both as a �eldname and as the corresponding pattern variable name.



6 T. Nordin and A. Tolmachgenerate :: CSP -> [State]generate csp@CSPfvars=varsg = g varswhere g 0 = [emptyState csp]g var = concat [extensions csp st | st <- g (var-1)]inconsistencies :: CSP -> State -> [(Var, Var)]inconsistencies CSPfrel=relg st =[ (var a, var b) | a <- as, b <- as, var a > var b, not (rel a b) ]where as = assignments stconsistent :: CSP -> State -> Boolconsistent csp = null . (inconsistencies csp)test :: CSP -> [State] -> [State]test csp = filter (consistent csp)solver :: CSP -> [State]solver csp = test csp candidates where candidates = generate cspFig. 2. A naive solver for CSPs.either order. Using an oracle function permits great exibility in the representationof constraints; for example, they can be implemented by a four-dimensional arrayof booleans or by a mathematical formula. However, the \black box" character ofthe oracle does prevent the use of algorithms that analyze constraint structure,such as arc consistency maintenance (Kumar, 1992); changing our code to use aless abstract constraint representation would be straightforward.A state is modeled as a sequence of assignments, together with a sequence ofas yet unassigned variables. States are built from emptyState by repeated use ofextensions, which takes a state, extracts the head (if any) of its list of unassignedvariables, constructs assignments of this variable to each possible value, extendsthe original state with each of these assignments in turn, and returns the resultinglist of extended states. The order of unassigned variables in each state thus governsthe order of assignments in its extensions. Ordinarily, the unassigned variables aresimply listed in increasing numeric order, as set by emptyState; however, the headof the unassigned list can be changed using newNextVar (which we use only inSection 11). The lastAssignment operator returns the assignment with which thestate was most recently extended.Figure 2 shows an implementation of a naive solver. We present the solver inthe standard \lazy pipeline" style that separates generation of candidate solutions(here the set of all complete states) from consistency testing. Although this codeappears to produce a huge intermediate list data structure candidates, lazy eval-uation insures that list elements are generated only on demand, and elements thatfail the �lter in test can be garbage collected immediately. Similarly, althoughinconsistencies appears to build a list of all inconsistent variable pairs in thestate, consistent actually demands just enough of the list to check whether itis null, and hence at most one inconsistent variable pair is calculated. Finally,although the solver returns a list of all solutions if demanded, it can be used toobtain just the �rst solution (and do no further computation) by asking for just



Modular Lazy Search for CSPs 7queens :: Int -> CSPqueens n = CSPfvals=n,vars=n,rel=safegwhere safe (col1 := row1) (col2 := row2) =(row1 /= row2) && abs (col1 - col2) /= abs (row1 - row2)graphcoloring :: Int -> ((Var,Var) -> Bool) -> Int -> CSPgraphcoloring nodes adj colors = CSPfvars=nodes,vals=colors,rel=okgwhere ok (n1 := c1) (n2 := c2) = c1 /= c2 || not (adj (n1,n2))Fig. 3. CSP examples.the head of the result. Although the code thus uses much less space than a strictreading would suggest, this solver is still extremely ine�cient because it duplicateswork, but it serves to illustrate lazy coding style and as a speci�cation for the moresophisticated solvers we introduce beginning in Section 4.Figure 3 shows two simple examples of CSPs that are useful for illustratingdi�erent search strategies. The n-queens problem looks for a way to put n queenson a n�n chess board such that no queen is threatening another. Our de�nition ofqueens is parameterized by the board size and uses the standard optimization thatwe only try to place one queen in each column (Nadel, 1990). The CSP variables arethe columns, the values are the rows, and each assignment represents the placementof a single queen; the oracle function replies True on a pair of queen positionsprovided that the queens are on di�erent rows and on di�erent diagonals. We makeheavy use of this example in the remainder of the paper.The graphcoloring function constructs an instance of a graph coloring prob-lem (Kempe, 1879), speci�ed by a number of nodes, a set of edges between nodes(represented by a characteristic function on pairs of nodes), and a number of colors.The CSP variables are the graph nodes, the values are the possible colors, and theoracle function returns True on a pair of color assignments provided that the colorsare di�erent or there is no edge between the nodes.Given the de�nition of a CSP, we can apply the general-purpose CSP machineryto solve it; for example, the expression solver (queens 5) generates a list ofsolutions to the 5-queens problem.4 Backtracking and Tree SearchThe most obvious defect of the naive solver is that it can duplicate a tremen-dous amount of work by repeatedly checking the consistency of assignments thatare common to many complete states. A fundamental fact about CSPs is that noextension to an inconsistent state can ever be consistent, so there is no point insearching such extensions for a solution. This observation immediately suggests abetter solver algorithm. A backtracking solver searches for solutions by construct-ing and checking partial states, beginning with the empty state and extending withone assignment at a time. Whenever the solver discovers an inconsistent state, itimmediately backtracks to try a di�erent assignment, thus avoiding the fruitlessexploration of that state's extensions. Moreover, consistency of each new state can



8 T. Nordin and A. Tolmachdata Tree a = Node a [Tree a]mkTree :: a -> [Tree a] -> Tree amkTree a ts = Node a tslabel :: Tree a -> alabel (Node a _) = ainitTree :: (a -> [a]) -> a -> Tree ainitTree f a = Node a (map (initTree f) (f a))mapTree :: (a -> b) -> Tree a -> Tree bmapTree f (Node a ts) = Node (f a) (map (mapTree f) ts)foldTree :: (a -> [b] -> b) -> Tree a -> bfoldTree f (Node a ts) = f a (map (foldTree f) ts)zipTreesWith :: (a -> b -> c) -> Tree a -> Tree b -> Tree czipTreesWith f (Node a ts) (Node b us) =Node (f a b) (zipWith (zipTreesWith f) ts us)prune :: (a -> Bool) -> Tree a -> Tree aprune p = foldTree fwhere f a ts = Node a (filter (not . p . label) ts)leaves :: Tree a -> [a]leaves = foldTree fwhere f leaf [] = [leaf]f _ ts = concat tsinhTree :: (b -> a -> b) -> b -> Tree a -> Tree binhTree f b (Node a ts) = Node b' (map (inhTree f b') ts)where b' = f b adistrTree :: (a -> [b]) -> b -> Tree a -> Tree bdistrTree f b (Node a ts) = Node b (zipWith (distrTree f) (f a) ts)Fig. 4. Trees in Haskell.be tested just by comparing the newly added assignment to all previous assign-ments in the state, since any inconsistency involving only the previous assignmentswould have been discovered earlier. If the solver manages to reach a complete statewithout encountering an inconsistency, it records a solution; if multiple solutionsare wanted, it backtracks to �nd the others.Backtracking solvers can be viewed very naturally as searching a tree, in whicheach node corresponds to a state and the descendents of a node correspond toextensions of its state. In conventional imperative implementations of backtracking,the tree is not explicit in the program; if a recursive implementation is used, the treeis isomorphic to the dynamic activation history tree of the program, but usually thetree is little more than a metaphor for helping the programmer reason informallyabout the algorithm. In the lazy functional paradigm it is natural to treat searchtrees as explicit data structures; programs are constructed as pipelines of operationsthat build, label, manipulate, and prune actual trees. As before, we rely on lazinessto avoid actually building the entire tree.



Modular Lazy Search for CSPs 9mkSearchTree :: CSP -> Tree StatemkSearchTree csp = initTree (extensions csp) (emptyState csp)earliestInconsistency:: CSP -> State -> Maybe VarearliestInconsistency CSPfrel=relg st =case assignments st of[] -> Nothing(a:as) -> case filter (not . rel a) (reverse as) of[] -> Nothing(b:_) -> Just(var b)labelInconsistencies :: CSP -> Tree State -> Tree (State,Maybe Var)labelInconsistencies csp = mapTree fwhere f s = (s,earliestInconsistency csp s)btsolver0 :: CSP -> [State]btsolver0 csp =(filter complete . map fst . leaves . prune ((/= Nothing) . snd). (labelInconsistencies csp) . mkSearchTree) cspFig. 5. Simple backtracking solver for CSPs.As the remainder of this paper deals exclusively with tree-based searches, it willprove convenient to blur the distinction between a node and its associated state.Thus we will freely use terms such as inconsistent node (meaning a node whoseassociated state is inconsistent) and the children of a state (meaning its extensionsby a single assignment).Figure 4 gives Haskell de�nitions for an abstract tree datatype and associated util-ity functions. A Tree is a node containing a label and a list of children, themselvesTrees. Function initTree generates a tree from a function that computes the chil-dren of a node (Hughes, 1989). Functions mapTree, foldTree, and zipTreesWithare the analogues of the familiar functions on lists. The application (prune p t)removes all subtrees of t whose root labels match p. However, the root node of theoverall tree is always retained; in our applications this is always appropriate, andit avoids the awkward possibility of an empty result, which is not expressible asa Tree. The leaves operator extracts the labels of the leaves of a tree into a listin left-to-right order. The inhTree function is a variant of map that propagatesa value down the tree much like an inherited attribute calculation in an attributegrammar, and distrTree is another map variant that transforms the value at eachnode to a list whose elements are distributed to the children.The code in Figure 5 uses trees of states to implement a backtracking solver,btsolver0, using a lazy pipeline. The generator mkSearchTree builds a tree con-taining all possible states, using a �xed variable ordering in which all nodes at leveli of the tree (counting the root as level 0) extend their parent by an assignment toa �xed vi. Each node describes an entire (partial) state, but sharing of list tails (inany reasonable Haskell implementation) guarantees that it actually stores only asingle assignment, together with a pointer to the remainder of the state embeddedin its parent node.The application (labelInconsistencies csp) returns a tree transformer: it



10 T. Nordin and A. Tolmach
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Fig. 6. Portion of search tree for queens 6. Nodes at level i show assignments to vi; theassigned values are shown in bold; the earliest variable, if any, with which the node isinconsistent is shown below it. Children of inconsistent nodes are not shown because,under lazy evaluation, they are never constructed. The diagram at the top right shows theboard position corresponding to the node at level 3. Each placed queen is marked by aQ in the corresponding square. If a square is numbered, then it is threatened by a placedqueen; the number is the column of the left-most queen that threatens that square.adds an annotation to each node recording the index of an earlier variable withwhich the most recent assignment conicts, if any. In fact, earliestInconsistencyreturns the earliest such variable (i.e. the one least recently assigned); the point ofchoosing this variable will become apparent in Section 7. The tree function pruneis used to remove all subtrees rooted at inconsistent nodes. Any nodes represent-ing complete states that are still left in the tree must be solutions; the remainingpipeline stages extract these using the tree function leaves and the standard listfunctions map and filter. Figure 6, taken from Kondrak (1994), illustrates a part ofthe tree for queens 6 just prior to pruning. It is essential to note that this pipelineis demand driven: each stage executes only when demanded by the following stage.In particular, inconsistency calculations will not be performed on descendents of



Modular Lazy Search for CSPs 11the nodes of the tree excised by prune, because the values of these nodes will neverbe demanded. Thus we get the desired e�ect of backtracking without any explicitmanipulation of control ow. Also, as before, only a small part of each intermedi-ate tree is ever \live" (non-garbage data) when a particular node is being operatedupon, namely the node's own label and thunks both for its descendents and for rightsiblings of its ancestors|essentially what would be stored in activation records fora recursive imperative implementation. (In particular, the ancestors of the node andtheir left siblings do not remain live.) So our lazy algorithms pay at worst a constantfactor more space than their imperative counterparts. We do, however, pay someoverhead for building, storing, and garbage collecting each tree node, and, unlessour Haskell implementation performs e�ective deforestation (Gill et al., 1993), thiscost will be repeated for each intermediate tree in the pipeline. For these reasons,the modular, lazy implementation of backtracking is an order of magnitude slowerthan a conventional recursive implementation in Haskell (see Section 12).5 Conict Sets and Generic SearchThe utility of the backtracking solver is based on its ability to prune subtrees rootedat inconsistent nodes; it does nothing with consistent nodes. Of course, just becausea state is consistent does not mean it can be extended to a solution; the assignmentsalready made may be inconsistent with any possible choices for future variables.Figure 6 shows several examples; for instance, the state with last assignment 4 := 1is consistent, but cannot be extended to a solution.If a solver could identify such conicted states, it could prune their extensionstoo. To make precise the exact conditions under which such pruning is possible, weintroduce the notion of conict set.De�nition 2Let s = fvik:=yk; : : : ; vi1:=y1g be a state. A conict set CS for s is a non-emptysubset of fi1; i2; : : : ; ikg such that, for any solution fvim:=xm; : : : ; vi1:=x1g, 9i 2 CSsuch that yi 6= xi.In other words, a conict set for a state identi�es a subset of assignments in thestate such that any solution must assign a di�erent value to at least one member ofthe subset. (Thinking imperatively, we might say a conict set contains variables atleast one of which \must be changed" to reach a solution.) Although use of conictsets is very common in the literature, a precise de�nition is di�cult to achieve;we base ours on that of Caldwell et al. (1997). If a conict set exists for a state,then evidently no extension of that state can be a solution. Note that a conictset for a given state is not, in general, uniquely de�ned. In particular, if a states = fvik:=xk ; : : : ; vi1:=x1g has a conict set CS, then every subset of fi1; : : : ; ikgthat is a superset of CS is also a conict set for s.It is obviously not possible to identify a conicted, but consistent, state withoutexploring some of its extensions; the trick is to avoid exploring all of them, andsave e�ort by pruning the remainder. We address algorithms with this propertybeginning in Section 7. For the moment, note that any inconsistent state has a



12 T. Nordin and A. Tolmachtype ConflictSet = OrderedSet VarisConflict :: ConflictSet -> BoolisConflict = not . isEmptySetsolutions :: Tree (State, ConflictSet) -> [State]solutions = filter complete . map fst . leaves . prune (isConflict . snd)type Labeler = CSP -> Tree State -> Tree (State, ConflictSet)search :: Labeler -> CSP -> [State]search labeler csp = (solutions . (labeler csp) . mkSearchTree) cspbt :: Labelerbt csp = mapTree fwhere f s = (s, case earliestInconsistency csp s ofNothing -> emptySetJust a -> listToSet [var (lastAssignment s),a])btsolver :: CSP -> [State]btsolver = search bt Fig. 7. Conict-directed solving of CSPs.emptySet :: Ord a => OrderedSet aisEmptySet :: Ord a => OrderedSet a -> BoolmemberSet :: Ord a => OrderedSet a -> a -> BoolunionSet :: Ord a => OrderedSet a -> OrderedSet a -> OrderedSet aintersectSet :: Ord a => OrderedSet a -> OrderedSet a -> OrderedSet aremoveFromSet :: Ord a => a -> OrderedSet a -> OrderedSet alistToSet :: Ord a => [a] -> OrderedSet aevalSet :: Ord a => OrderedSet a -> OrderedSet aFig. 8. Signature for ordered set ADT.conict set. In particular, if a state whose last assigned variable is vi has an earliestinconsistent variable vj , then it has fi; jg as a conict set, which we call the earliestconict set.A conict set labeling is a state tree in which each node has been annotated witha (non-empty) conict set for that node's state, or with the empty set, signifyingthat the conict set for that node's state is unknown. To be useful for search, aconict set labeling must reect basic consistency information.De�nition 3A conict set labeling is a searchable labeling if, for every inconsistent node s, s orsome ancestor of s is labeled with a (non-empty) conict set.One searchable labeling is given by annotating each node with its earliest conictset if it has one, and with the empty set otherwise.Using searchable labelings, we can subsume backtracking search in a more generalalgorithm we call conict-directed search, shown in Figure 7. We de�ne a genericroutine search, parameterized by a labeler function that generates searchable



Modular Lazy Search for CSPs 13labelings. By applying search to the labeler function bt we obtain a simple back-tracking solver btsolver that behaves just like btsolver0. All the more sophisti-cated search algorithms discussed in the remainder of the paper, except those ofSection 11, can be obtained by using fancier labeler functions while leaving searchitself unchanged.Conict sets are represented using an abstract data type of ordered sets, withthe signature shown in Figure 8 and the usual semantics. Our implementation (notshown here) uses ordered lists; it turns out that common operations on conictsets are most e�cient if the lists are held in decreasing numeric order. FunctionevalSet forces strict evaluation of a set's contents; it can be implemented by forcingevaluation of the representation list's length.The structure of search is straightforward. The full tree of possible states isgenerated and fed to the labeler. If the labeler can determine a conict set CSfor a node, it annotates the node with CS; otherwise, it annotates it with ;. (Ingeneral, we also permit the labeler to rearrange or prune its input tree, so longas its output is a searchable labeling and still contains all solution states.) Theoutput of the labeling stage is fed to a pruner, which removes subtrees rooted atnodes labeled with conict sets. Again, demand-driven execution guarantees thatthe excised subtrees never need to be labeled. This is why a searchable labelingneed not attach conict sets to the descendents of inconsistent nodes, which allowssimpler and less expensive labeler code. After pruning, the solution nodes are justthe complete leaves of the remaining tree; the remainder of the pipeline simplycollects these. Figure 9 shows the conict set labeling for the same (queens 6)subtree as in Figure 6. 6 Heuristics and Search OrderAs with the naive solver, if we are interested in only the �rst solution rather thanall solutions, we can still use search unchanged, by demanding just the head of thesolution list. Since solutions are always extracted in left-to-right order, this impliesthat the time required to �nd the �rst solution will be very sensitive to the orderin which values are tried for each variable. The use of value-ordering heuristics iswell-established in the imperative search literature (Kumar, 1992). Such heuristicscould be implemented using specialized generator functions that produce the initialtree in the desired order. A more modular approach, however, is to view theseheuristics as ways to rearrange existing trees; this keeps the initial generator simpleand allows multiple heuristics to be readily composed.Such rearrangement heuristics can be easily expressed in our framework by incor-porating them into the labeler function. For example, in solutions to the n-queensproblem, queens seldom end up near the corners of the board. Therefore, queenssearch can be speeded up by considering row values in random order rather than inthe usual generated order, which tends to consider corner positions �rst. Functionhrandom in Figure 10 transforms a tree by randomizing the order of its children(using a random number generator not shown here). The randomization transfor-
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Fig. 9. Portion of search tree for queens 6 annotated with earliest conict sets. Nodesat level i show assignments to vi; the assigned value xi is shown in bold. Children ofnodes with conict sets are not shown because, under lazy evaluation, they are neverconstructed.mation is expressed as a higher-order fold.2 The application (btr seed) returns alabeler that combines randomization with standard backtracking search.7 Conict-Directed BackjumpingThe bt algorithm annotates inconsistent nodes with conict sets, but most internalnodes remain unannotated. If we could somehow compute conict sets for internalnodes closer to the root of the tree, we could prune larger subtrees and so speed upsearch.One approach to computing internal node conict sets is to construct thembottom-up from the conict sets of a subset of their children. To do this, we makeuse of two key lemmas about conict sets. Intuitively, the �rst lemma says that if no2 The operator ($):(a->b)->a->b represents explicit application in Haskell, i.e. ($) f x = f x.



Modular Lazy Search for CSPs 15hrandom :: Int -> Tree a -> Tree ahrandom seed t = foldTree g t seedwhere g a ts seed =mkTree a (randomizeList seed' (zipWith ($) ts (randoms seed')))where seed' = random seedbtr :: Int -> Labelerbtr seed csp = bt csp . hrandom seedFig. 10. A randomization heuristic.child of a node s can be extended to a solution, then neither can s, and any solutionmust di�er from s on the value of at least one of the variables in the conict setof one of the children. The second lemma says that if a node s has conicts thatdo not depend on the value of the last assignment in s, then the same conictsmust apply to its parent. To avoid cumbersome notation, we state and prove thelemmas assuming a �xed variable order v1; : : : ; vm, but analogous results hold forthe dynamically ordered trees of Section 11.Lemma 1Consider a �xed-variable-order search tree for a CSP with m variables and n values.Let s = (vl := yl; : : : ; v1 := y1)be a node at level l (1 � l < m) with children s1; : : : ; sn, such that each child sihas a (non-empty) conict set CSi. ThenCS = (CS1 [ CS2 [ � � � [ CSn)� fl+ 1gis a conict set for s.ProofWithout loss of generality, assume that the children are ordered so that si assignsthe value i to vl+1, that is,si = (vl+1 := yl+1 = i; vl := yl; : : : ; v1 := y1) (1 � i � n)Now consider any CSP solution(vm := xm; : : : ; vl+1 := xl+1 = k; : : : ; v1 := x1)where we write k for xl+1. Consider the conict set CSk associated with child sk.By the de�nition of conict set, 9i 2 CSk � f1; : : : ; l + 1g such that yi 6= xi.However, since sk assigns k to vl+1, we cannot have i = l+1. Hence we must havei 2 CSk � fl+ 1g. Hence i 2 CS, so CS is indeed a conict set for s.Lemma 2Consider a �xed-variable-order search tree for a CSP with m variables. Lets = (vl := yl; : : : ; v1 := y1)



16 T. Nordin and A. Tolmachbj0bt :: Labelerbj0bt csp = bj0 csp . bt cspbj0 :: CSP -> Tree (State, ConflictSet) -> Tree (State, ConflictSet)bj0 csp = foldTree fwhere f (s, cs) ts| isConflict cs = mkTree (s, cs) ts| otherwise = mkTree (s, cs') tswhere cs' = combine (map label ts) []unionCS :: [ConflictSet] -> ConflictSetunionCS css = foldr unionSet emptySet csscombine :: [(State, ConflictSet)] -> [ConflictSet] -> ConflictSetcombine [] acc = unionCS acccombine ((s, cs):ns) acc| not (memberSet cs lastvar) = cs| isEmptySet cs = emptySet| otherwise = combine ns ((removeFromSet lastvar cs):acc)where lastvar = var (lastAssignment s)bjbt :: Labelerbjbt csp = bj csp . bt cspbj :: CSP -> Tree (State, ConflictSet) -> Tree (State, ConflictSet)bj csp = foldTree fwhere f (s, cs) ts| isConflict cs = mkTree (s, cs) ts| isConflict cs' = mkTree (s, cs') [] -- plug first leak| otherwise = mkTree (s, cs') tswhere cs' = evalSet (combine (map label ts) []) -- plug second leakFig. 11. Two implementations of conict-directed backjumping.be a node at level l (1 � l � m) with a conict set CS such that l 62 CS � f1; : : : ; lg.Then CS is also a conict set for the parent of s, namelyp = (vl�1 := yl�1; : : : ; v1 := y1)ProofConsider any CSP solution (vm := xm; : : : ; v1 := x1). By de�nition of conict set,9i 2 CS such that xi 6= yi. Since l 62 CS, it must be the case that i � (l� 1). HenceCS ful�lls the de�nition of a conict set for p as well.Function bj0 in Figure 11 is a lazy bottom-up algorithm that applies the twolemmas to compute internal node conict sets from a tree that has been (lazily)annotated with an initial labeling. At each parent node that does not already havea conict set, bj0 calls combine to build one. Function combine inspects the con-ict sets of the children in turn. If it �nds a child to which Lemma 2 applies itimmediately returns this child's conict set for use in the parent. If no such child isfound, but every child has a conict set, it applies Lemma 1. Under lazy evaluation,the subtrees corresponding to the remaining children are never explored. The com-bination of bj0 with bt is commonly referred to as conict-directed backjumping(CBJ) (or just backjumping) in the literature.As an example, consider again the subtree of (queens 6) shown in Figure 6 after
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Fig. 12. Same portion of search tree for queens 6 as in Figure 9, annotated with conictsets as computed by bj. Nodes to the right of 4 := 1 have been pruned away.
queens have been placed in columns 1{3. Inspection of the corresponding boardposition shows that this state cannot be extended to a solution, because the queensin columns 5 and 6 are already constrained to lie in the same row, regardless ofwhich row we choose for the queen in column 4. Figure 12 shows how backjumpingtakes advantage of this fact to avoid repeated placement attempts for columns 5and 6. After all conict sets in the left-hand subtree at level 6 have been calculated,Lemma 1 can be applied to calculate a conict set of f1; 2; 3; 5g for the parent nodewith last assignment 5 := 4. After the other conict sets of this node's siblings arecomputed, Lemma 1 can be applied again to calculate a conict set of f1; 2; 3g forits parent node, which has last assignment 4 := 1. Since 4 62 f1; 2; 3g, Lemma 2 canbe applied, to give the same conict set to the parent node, which has assignment3 := 3. The remaining children of this last node need not be explored.This algorithm works correctly for any initial conict set labeling, but it is moste�ective when the conict sets are small and contain low-numbered variables, be-cause this increases the number of levels for which Lemma 2 can be applied. This



18 T. Nordin and A. Tolmachis why we use earliest inconsistent pairs to represent consistency conicts. CBJ isthe cornerstone of many newly-developed algorithms (Frost, 1997). In its usual im-perative formulation this algorithm is notoriously di�cult to understand or provecorrect. We have relied on the analysis of Caldwell et al. (1997) for our understand-ing of conict sets, but we are unaware of any previous description of the algorithmas a form of labeling.Although search bj0bt behaves just like imperative CBJ in the sense that itperforms the same number of consistency checks, it has two unfortunate spaceleaks. The �rst leak occurs because the pruning phase must keep a pointer to eachnode's list of children until that node's conict set has been computed, but thatcomputation may generate a substantial part of the subtree rooted at the node. Evenif most of the subtree is eventually pruned, its transient memory requirements canbe exponentially large. We can plug this leak, at the cost of some loss in modularity,by adding additional pruning into the labeler itself: if a conict set is computed fora node, we immediately remove the node's children. The second leak occurs becausethe thunk returned by combine at a given node may retain pointers to a substantialpart of the subtree rooted at that node. Since the resulting conict set will de�nitelybe demanded further up in the tree, we can plug this leak in a straightforward wayby forcing evaluation of combine's result. Function bj shows the �nal code afterboth leaks have been plugged. 8 BackmarkingOrdinary backtracking provides one way to generate conict sets, but it is not nec-essarily the best way. The bt labeler works by checking each assignment against allprevious assignments in its state. Although this approach checks the overall consis-tency of each partial state only once, it can still perform many duplicate pairwiseconsistency checks because all the subtrees of a given node are identical exceptfor the assignments at their roots. Consider a node s at level l, and consider anydescendent s0 of s other than an immediate child. In checking the consistency ofs0, pairwise checks will be made between its last assignment and all the assign-ments in s at levels less than or equal to l. These checks will be duplicated forthe corresponding descendents of every sibling of s (unless, of course, they had aninconsistent ancestor and have been pruned away). For an example, compare thetwo nodes shown on level 6 of Figure 9 having last assignment 6 := 6. To generatetheir conict sets, bt makes the same three comparisons in each case, namely with1 := 2, 2 := 5, and 3 := 3, before encountering a conict.An alternative approach is to cache the results of such consistency checks so theycan be reused for each sibling; this should reduce the total number of consistencychecks at the cost of the space needed for caching. We annotate each node witha cache to store information about inconsistencies between that node's state andthe assignments made in its descendents. Each cache is organized as a table havingan entry for every possible assignment of the thus-far unassigned variables. If theassignment would cause a conict with an already-assigned variable, the cache entrycontains a conict set; otherwise, it contains the empty set. Each node's cache is a



Modular Lazy Search for CSPs 19Variable Value:= 1 := 2 := 3 := 4 := 5 := 64 fg f1,4g f2,4g f3,4g f1,4g fg5 f3,5g f1,5g f3,5g fg f2,5g f1,5g6 f2,6g f1,6g f3,6g fg f2,6g f3,6gTable 1. Fully-evaluated cache table corresponding to node at level 3 of queens 6search tree in Figure 9.re�nement of its parent's cache, with a cache at any given level containing completeconsistency information about assignments at the next level, and partial informationabout assignments at lower levels. As an example, Table 1 shows the cache contentsfor the node at level 3 of Figures 6 and 9. The non-empty entries in the cache canbe used to generate all the conict set annotations in Figure 9 that involve variable1, 2, or 3; that includes all the annotations at level 4, and most of those at levels 5and 6. Note also how the rows of the cache table correspond with columns 4-6 ofthe inset diagram in Figure 6; in e�ect, caches for the n-queens problem describethreatened positions in unassigned columns.Figure 13 shows an algorithm implementing cache-based labeling, based on animplementation of caches shown in Figure 14. Function augmentConflicts com-putes the cache contents for a node based on the node's assignment and the node'sparent's cache. To do this, it maps extendCS over each cache entry. If the parent'scache already records a conict set for the future assignment, that set is inherited bythe current cache; otherwise a conict check is performed and the result (an earliestconict set or ;) is recorded. Function storeConflicts applies augmentConflictsto each node in a tree in top-down fashion. Once the tree has been annotated withcache tables, extractConflicts is used to extract the conict sets for the nextunassigned variable at each node and distribute them over the node's children; theresulting tree of conict sets is then zipped together with the state labels from theoriginal tree. The �nal annotated tree is identical to that produced by bt.Caches are implemented as lists of lists.3 As usual, we rely on lazy evaluation toavoid building the tables or their contents unless they are needed. So most of thetables remain unbuilt, and the actual order in which consistency checks is performedis similar to bt. The important point is that, because many of a node's table entriesare inherited from its parent's table, all duplicate consistency checks are avoided.As before, we obtain a complete solver by using bm as the labeler parameter tosearch. Bacchus and Grove (1995) made the somewhat surprising discovery thatthis lazy caching algorithm is equivalent (in terms of consistency checks made) toa standard imperative algorithm called backmarking.3 A two-dimensional array or an array of arrays would be more obvious implementations, butthey turn out not to not perform as well under the ghc compiler.



20 T. Nordin and A. Tolmachbm :: Labelerbm csp = extractConflicts . storeConflicts cspstoreConflicts :: CSP -> Tree State -> Tree (State,Cache ConflictSet)storeConflicts csp = inhTree f (undefined,undefined)where f (_,tbl) s = (s,augmentConflicts csp tbl s)augmentConflicts :: CSP -> Cache ConflictSet -> State -> Cache ConflictSetaugmentConflicts csp@CSPfrel=relg parentTbl s| isEmptyState s = initCache csp emptySet| otherwise = mapCache extendCS tblwhere tbl = thinCache parentTbl (var lasta)extendCS :: Assignment -> ConflictSet -> ConflictSetextendCS a cs| isConflict cs = cs| rel lasta a = emptySet| otherwise = listToSet [var lasta, var a]lasta = lastAssignment sextractConflicts :: Tree (State,Cache ConflictSet) -> Tree (State,ConflictSet)extractConflicts t = zipTreesWith g t t'where t' = distrTree f emptySet tf (s,tbl) = lookupCache tbl (nextVar s)g (s,_) cs = (s,cs) Fig. 13. Backmarking.data Cache a = Cache [(Var,[a])]initCache :: CSP -> a -> Cache ainitCache CSPfvars=vars,vals=valsg i = Cache (zip [1..vars] (repeat row))where row = take vals (repeat i)thinCache :: Cache a -> Var -> Cache athinCache (Cache cache) var0 = Cache [(var,row) | (var,row) <- cache, var /= var0]mapCache :: (Assignment -> a -> a) -> Cache a -> Cache amapCache f (Cache cache) =Cache [(var, newRow var row) | (var,row) <- cache]where newRow var row = [ f (var := val) a | (val, a) <- zip [1..] row ]lookupCache :: Cache a -> Var -> [a]lookupCache (Cache cache) var = valwhere Just val = lookup var cachegetCache :: Cache a -> [(Var,[a])]getCache (Cache cache) = cache Fig. 14. Caches.Of course, the decrease in checks comes at the cost of increased space require-ments. For a problem with m variables and n values, each cache requires up to nmentries, each of which records at most 2 conicting variables; since there can be upto m caches live at any one time, the total cost is O(m2n) cells. However, even forlarge problems, this is unlikely to be a signi�cant limitation.



Modular Lazy Search for CSPs 21mfc :: Labelermfc csp = mfc' csp . storeConflicts cspmfc' :: CSP -> Tree (State,Cache ConflictSet) -> Tree (State,ConflictSet)mfc' csp t = zipTreesWith f (extractConflicts t) (mapTree (wipedDomain csp) t)where f (s,cs) cs' | isConflict cs = (s,cs)| otherwise = (s,cs')wipedDomain :: CSP -> (State, Cache ConflictSet) -> ConflictSetwipedDomain CSPfvars=varsg (s,tbl)| null wipedDomains = emptySet| otherwise = intersectSet (unionCS (head wipedDomains))(listToSet (map var (assignments s)))where wipedDomains :: [[ConflictSet]]wipedDomains = [css | (v,css) <- getCache tbl, all isConflict css]Fig. 15. Minimal forward checking.9 Forward CheckingThe cache tables built for backmarking can be further exploited to avoid still moreconsistency checks. Suppose that the table for some node s contains a row, corre-sponding to an as yet unassigned variable, in which every entry contains a conictset. Then it is evident that node s can never be extended to a solution, because theassignments in s rule out all possible values for the future variable. (As an example,consider the inset diagram in Figure 6; if we add a queen at position 4 := 6, thiswill rule out the sole remaining possible assignment for column 6, namely 6 := 3,regardless of what happens in column 5.) Therefore, there must exist a non-emptyconict set for s. By labeling s with such a set, we can avoid further search in thesubtree rooted at s. This technique has been called domain wipeout (Bacchus &Grove, 1995). The combination of domain wipeout with bm labeling corresponds tothe well-known imperative algorithm called forward checking. Because our cachetable construction is lazy, we have actually rediscovered (\for free") minimal (orlazy) forward checking, itself a recent discovery in the imperative literature (Dent& Mercer, 1994).Figure 15 shows code for implementing domain wipeout in combination with backmarking. The use of storeConflicts and extractConflicts is just as in back-marking, but we also keep the cache-annotated tree to use as input to wipedDomain.Because of laziness, the search for an empty domain is only performed if backmark-ing fails to �nd a conict set.To gather a list of wipedDomains and test whether it is non-empty is straightfor-ward. The interesting question is what conict set to assign to the node s if domainwipeout has occurred. Since it is always valid to throw additional variables into anon-empty conict set, we could just use the complete set of variables assigned bys. But it is better to use the smallest available conict sets based on the availableinformation, because this can increase their utility for other algorithms (e.g., back-jumping). In this case, the cache table row for a wiped-out domain records whichexisting assignment rules out each possible value for that domain. The union of the



22 T. Nordin and A. Tolmachvariables in these assignments (restricted to the variables assigned by s) is a validconict set for s, since any solution must assign a di�erent value to at least oneof them. If there is more than one wiped-out domain, we could compute a conictset from any one of them; for simplicity and to limit computation, domainWipeOutjust chooses the �rst. 10 Mixing and MatchingA major advantage of our declarative approach is that we can trivially combinealgorithms using function composition, so long as they take a consistent view ofconict set annotations. For example, we can describe a labeler that combinesminimal forward checking and backjumping in a single line:bjmfc csp = bj csp . mfc cspImperative forward checking is traditionally described as �ltering out all the con-icting values from the domains of future variables; this makes it hard to explainhow it can be pro�tably combined with backjumping, since the latter would seem tohave no information on which to base backjumping decisions. Our viewpoint is thatforward checking is just a more (time-)e�cient way of generating conict sets, whichmakes the combination perfectly reasonable. Although backjumping has previouslybeen combined with strict forward checking (Prosser, 1993b), to our knowledge ithas never been combined with minimal forward checking.Similarly, the combination of backmarking and backjumpingbjbm csp = bj csp . bm cspis tricky to implement correctly in an imperative setting (Kondrak, 1994), but issimple for us, and turns out to do fewer consistency checks on queens than any ofour other �xed-variable-order algorithms (see Table 2 in Section 12).Once problem-speci�c value ordering heuristics are introduced, many more possi-bilities for new algorithm design open up. Since the best combination of algorithmfeatures tends to depend on the particular problem at hand, it is important to beable to experiment with di�erent combinations; our framework should make thisextremely easy. 11 Dynamic Variable OrderingAll the algorithms described so far have used a �xed order for choosing the nextvariable to assign to at each tree level. We might hope to do a better job in choosingthat variable by using information gathered during the search. Techniques for doingthis are known as dynamic variable ordering (DVO) heuristics. Such heuristics canbe implemented by feeding information from later stages of the search pipelineback into the generation of the search tree. A lazy framework that supports thisapproach is shown in Figure 16. Since the generation of the search tree is nowdependent on later stages of the pipeline we have to be careful not to demandnodes in the tree before they are generated. The laziness issues involved are subtle,



Modular Lazy Search for CSPs 23type DVOParams a = (CSP -> Tree (State,a) -> Tree (State,ConflictSet),CSP -> a -> State -> Var,CSP -> a -> State -> a)searchDVO :: DVOParams a -> CSP -> [State]searchDVO (relabeler,selector,prelabeler) csp =(solutions . (relabeler csp) .mkSearchTreeDVO (prelabeler csp) (selector csp)) cspmkSearchTreeDVO :: (a -> State -> a) -> (a -> State -> Var) -> CSP -> Tree (State,a)mkSearchTreeDVO prelabeler selector csp = initTree mk (root_s,root_a)where mk (s,a) = [(newNextVar s' (selector a' s'),a') |s' <- extensions csp s,let a' = prelabeler a s']root_a = prelabeler undefined root_sroot_s = emptyState cspFig. 16. Dynamic variable ordering.but by encapsulating them in the implementation of the generator function, wehave made it easy to add new heuristics.The search tree generator mkSearchTreeDVO is parameterized by a prelabelertransform and a selector function. The prelabeler is applied to the state tree toproduce an annotated tree; the selector uses the states and annotations to choosethe next variable to search on from among those still unassigned. In order to avoidcyclic dependencies, the prelabeler is required to operate in top down fashion: itmust compute the annotation for a node based solely on the node's state and itsparent's annotation. The result of the selection step is recorded by reordering thelist of unassigned variables using the newNextVar function from Figure 1.The searchDVO function is essentially similar to ordinary search, except thatit uses mkSearchTreeDVO, and it allows the search labeling function, here calleda relabeler, to make use of the annotations built by the prelabeler. A completesolver is obtained by applying searchDVO to a triple DVOParams, consisting of arelabeler, selector, and prelabeler.One common and practical DVO heuristic is called fail �rst; it always picks thevariable with the smallest remaining domain (i.e. the smallest number of possiblevalue assignments). In the event of a tie, the domain with lowest-numbered variableis picked. For example, in the state shown in the inset diagram in Figure 6, after theassignment 3 := 3, the domain for column 4 contains two values, and the domainsfor 5 and 6 contain one value each; the fail �rst heuristic will therefore pick column5 as the next variable to try. The rationale for this heuristic is that it encouragesearlier identi�cation and pruning of conicted nodes.Figure 17 shows a number of possible implementations of this heuristic. All ofthem use augmentConflicts (Figure 13) as the prelabeling function, which anno-tates each node with a cache of future conict set information, just as in backmark-ing. We show three di�erent possible selector functions for calculating the smallestremaining domain. Although all three selectors compute the same answer, and areabout equally e�cient in practice, they exhibit subtle di�erences in laziness, which



24 T. Nordin and A. TolmachfailFirst0 :: Cache ConflictSet -> State -> VarfailFirst0 tbl _ = varwhere (var,_) = foldr1 smallerDomain sizedDomainssmallerDomain a@(_,asize) b@(_,bsize) = if asize <= bsize then a else bsizedDomains = [(var,length (filter (not . isConflict) css))| (var,css) <- getCache tbl]ff0 :: DVOParams (Cache ConflictSet)ff0 = (const extractConflicts,const failFirst0,augmentConflicts)ff0solver :: CSP -> [State]ff0solver = searchDVO ff0failFirst :: Cache ConflictSet -> State -> VarfailFirst tbl _ = varwhere (var,_) = foldr1 smallerDomain sizedDomainssmallerDomain a@(_,asize) b@(_,bsize) = if asize `nleq` bsize then a else bsizedDomains = [(var,nlength (filter (not . isConflict) css))| (var,css) <- getCache tbl]ff :: DVOParams (Cache ConflictSet)ff = (const extractConflicts,const failFirst,augmentConflicts)failFirst1 :: Cache ConflictSet -> State -> VarfailFirst1 tbl _ = varwhere (var,_) = smallestDomain sizedDomainssmallestDomain domains =case emptyDomains ofd:_ -> d[] -> smallestDomain (map f domains)where f (var,n) = (var,npred n)where emptyDomains = filter (isZ . snd) domainssizedDomains = [(var,nlength (filter (not . isConflict) css))| (var,css) <- getCache tbl]ff1 :: DVOParams (Cache ConflictSet)ff1 = (const extractConflicts,const failFirst1,augmentConflicts)Fig. 17. Three di�erent implementations of fail-�rst ordering.are reected in the numbers of consistency checks they perform. The �rst selector,failFirst0, scans each row of the cache table annotation, calculating the integerrepresenting the size of the corresponding domain (i.e. the number of values forwhich no conict set is recorded), and selecting the smallest domain accordingly.Although failFirst0 calculates the correct result in a straightforward fashion,searches that use it perform more consistency checks (see Table 2 in Section 12)than imperative implementations of fail �rst described in the literature (Bacchus& Grove, 1995). This is because the published algorithms determine the smallestremaining domain without actually determining the exact size of that domain. Wecan achieve the same e�ect by calculating domain sizes using an implementation ofnatural numbers that supports lazy comparisons, as shown in Figure 18. ChangingfailFirst0 to use Nat instead of int requires only that we change the functionsused to compute and compare lengths; the result is shown as failFirst. The re-sulting consistency check counts match the literature.Fail �rst uses the cache table in much the same way as domain wipeout does.



Modular Lazy Search for CSPs 25data Nat = Z | S Natnleq :: Nat -> Nat -> Boolnleq Z _ = Truenleq _ Z = Falsenleq (S n1) (S n2) = nleq n1 n2isZ :: Nat -> BoolisZ Z = TrueisZ _ = Falsenpred :: Nat -> Natnpred (S n) = nnpred Z = error "npred"nlength :: [a] -> Natnlength [] = Znlength (a:as) = S(nlength as)Fig. 18. Natural numbers.This similarity between forward checking and fail �rst is not coincidental; forwardchecking is essentially a limited form of fail �rst that deviates from the �xed variableordering only when the smallest remaining domain is completely empty. We mightexpect, therefore, that adding forward checking to ff, by using the DVOParamsmfcff = (mfc',const failFirst,augmentConflicts)would not lower the number of consistency checks required. However, as Table 2shows, this is not true: the combination mfcff performs slightly fewer checks thanplain ff. The reason for this is subtle: mfc performs only enough consistency checksto �nd an empty domain, whereas failFirst may also perform checks in order todetermine which of two non-empty domains is smaller, even if there is a completelyempty domain further down the list. Function failfirst1 is a variant of failFirstthat �nds the smallest domain by �rst looking for an empty domain; if none is found,it decrements the size of each remaining (non-empty) domain, and tries again. Theresulting ff1 search incorporates all the behavior of forward checking, and performsexactly the same number of checks as the the combined algorithmmfcff1 = (mfc',const failFirst1,augmentConflicts)Moreover, ff1 performs fewer consistency checks on queens than any fail-�rst vari-ant we have discovered in the literature.We can also combine fail �rst with backjumping:bjff1 = (\csp -> bj csp . extractConflicts,const failFirst1,augmentConflicts)This algorithm shows only tiny improvement over ff1, which is not surprising. Wecan view backjumping as a mechanism for compensating for a poor �xed variableorder, in which heavily constrained variables appear late in the order; thus, it haslittle left to do after an e�ective dynamic ordering heuristic has been applied.



26 T. Nordin and A. TolmachQueens 8 9 10 11 12 13bt 46752 243009 1297558 7416541 45396914 292182579bjbt 41128 214510 1099796 6129447 36890689 233851850bm 12308 50866 220052 1026576 5224512 28405086mfc 12276 51642 220745 1038129 5297651 28817439bjbm 11928 49369 210210 975198 4938324 26709008bjmfc 12229 51314 218907 1026826 5231284 28387767ff0 12502 51856 214244 980640 4869822 25627720ff 11934 49317 202593 924150 4590577 24183989mfcff 11726 48487 197420 898096 4446851 23388513ff1 11579 47385 191813 868409 4281753 22479211mfcff1 11579 47385 191813 868409 4281753 22479211bjff1 11579 47375 191776 868066 4280093 22468711Solutions 92 352 724 2680 14200 73712Table 2. Number of consistency checks performed by various algorithms on the all-solutions n-queens problem. Algorithms are identi�ed by their labeler function orDVO parameter triple name.12 Experimental ResultsWe have investigated the performance of the various algorithms on a number ofsimple problems. These include �nding all solutions to the n-queens problem forn 2 f8; : : : ; 13g; �nding the �rst solution to the 16-queens problem; and �nding the�rst solution to the graph coloring problem on each of four graphs|Anna, Miles250,Miles500, Miles1000|drawn from the Stanford Graph Base (Knuth, 1994).4We tried the all-solutions queens problems using many di�erent algorithms, mea-suring the number of consistency checks performed. We tried the other problems(and the all-solutions 12-queens problem) using a smaller selection of algorithms,measuring the number of consistency checks performed, elapsed execution time inuser mode, and maximum heap memory use. The measurements were taken on alightly loaded 400MHz UltraSPARC-II with 4GB of memory, using ghc (the Glas-gow Haskell compiler) version 4.08, with optimization ags -O2 -O2-for-C and a64MB target heap size, and gcc version 2.95.2, with optimization ag -O2.As noted in Section 1, the number of consistency checks is a widely used metricfor comparing algorithm e�ciency in a machine- and implementation-independentfashion. Moreover, for the all-solutions n-queens problem, consistency check countsare often used to con�rm that code actually implements the algorithm that it pur-ports to. Table 2 gives precise counts for those problems. For the remaining prob-lems, Figure 19 shows consistency check counts and normalized execution times,4 For each of the graph coloring problems, we set the number of available colors (i.e. the domainof allowed values) to the minimum possible number, as obtained from the literature.
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(2.15s)Fig. 19. Consistency checks and relative runtimes of various problem/algorithm combina-tions. Algorithms are identi�ed by their labeler function or DVO parameter triple name.Runtimes for each problem are relative to the fastest algorithm for that problem, whoseabsolute time is indicated in parentheses. Vertical scales are logarithmic. Bars reaching tothe top of the graph correspond to combinations that failed to complete within 24 hours.
both on a logarithmic scale. Each problem/algorithm combination was allowed torun for up to 24 hours; many did not terminate.It is clear that choice of algorithm can have a signi�cant impact on the timeand number of checks required to solve these problems. Check counts correlateonly moderately well with times, but the ranking of algorithms from fastest toslowest for each particular problem is roughly the same for both metrics. Perhapsthe most obvious point to be made about these data is that the results vary widely



28 T. Nordin and A. TolmachAlgorithm All First Anna Miles250 Miles500 Miles100012-queens 16-queensbt 4 7 - - - -btr 23 74 - - - -bjbt 20 80 229 180 535 -bm 27 140 - - - -mfc 25 131 - - - -bjbm 44 218 1496 1390 2227 -bjmfc 43 214 1501 1414 2233 -ff1 24 138 2190 1497 3082 6088variables 12 16 138 128 128 128values 12 16 11 8 20 42Table 3. Maximum heap memory (in kilobytes) used by problem/algorithm experi-ments. Algorithms are identi�ed by their labeler function or DVO parameter triplename. Missing entries correspond to experiments that failed to complete within 24hours.among the di�erent problems, con�rming the need for experimentation to �nd thebest algorithm for a particular problem, or even problem instance. However, a fewgeneral conclusions can be drawn. Fail-�rst dynamic variable ordering (ff1 and itsvariants) is usually the best algorithm, whether measured by time or check count,sometimes by orders of magnitude. On the queens problems, the algorithms basedon caching (bm, mfc, ff1, and their variants) make signi�cantly fewer checks thanthose that are not; they do not always run faster, however, because of the overheadof maintaining the cache. On the graph problems, caching is not particularly useful,but backjumping (bj) makes a highly worthwhile addition to the �xed variable orderalgorithms; for example, bjbt, bjbm, and bjmfc all �nd solutions to Anna in undera second, whereas bt, bm, and mfc fail to �nd a solution in 24 hours! Finally, a goodheuristic can be very helpful; the version of simple backtracking that randomizes itsvalue ordering (btr) performs fewer checks than any other algorithm for �nding the�rst solution to 16-queens, and �ve orders of magnitude fewer than unrandomizedbacktracking (bt).Table 3 shows the maximum heap used by each problem/algorithm combinationthat completed within 24 hours. As expected, the only signi�cant memory require-ments are due to caching in large problems. For the graph problems, memory useis roughly proportional to the product (number of variables)� (number of values).As best we can tell, none of the algorithms leak memory.Relative to conventional imperative implementations, our code is slow. To esti-mate the time cost of modularity and laziness, we wrote a conventional recursiveversion of backtracking search to report the number of solutions for the n-queensproblem in Haskell, and compared the runtime with that of bt. On the 12-queens



Modular Lazy Search for CSPs 29problem, the modular version runs almost ten times slower than the recursive for-mulation (117.3 s vs. 12.3 s). Further, informal experiments suggest that most ofthis slowdown is due to the need to build, read, and eventually garbage-collecttree nodes at each stage of the pipeline. To further estimate the overhead of usingHaskell, we also coded the conventional recursive search algorithm in idiomatic C.The Haskell code is about three times slower than the C code (which runs in 4.4 s),probably because it displays much less locality of reference. However, even a con-stant factor slowdown of 30 due to implementation technology is not very signi�cantfor search problems, where a small change in algorithm can a�ect performance bymany orders of magnitude. 13 Related WorkHughes (1989) gives a lazy development of minimax tree search. Bird & Wad-ler (1988) treat the n-queens problem using generate-and-test and lazy lists. Oegede Moor (1995) describes a Gofer program that solves a certain class of optimiza-tion problems using dynamic programming; like ours, his code is structured as alazy pipeline, but his primary aim is to demonstrate the broad applicability of asingle �xed algorithm rather than to exploit easy functional composition of pipelineelements as we do.Laziness (not in the context of lazy languages) has been used for improving thee�ciency of existing CSP algorithms (Dent & Mercer, 1994; Schiex et al., 1996),but as far as we know laziness has not previously been used to modularize any ofthe CSP algorithms presented here.Many reformulations of standard CSP algorithms into uniform frameworks ex-ist in the literature (Ginsberg, 1993; Tsang, 1993; Bacchus & van Run, 1995;Frost, 1997), but the frameworks typically are not modular; at best, the di�er-ences between two algorithms are highlighted by showing which lines of code havechanged (Kondrak, 1994). Algorithms have been classi�ed according to the amountof arc consistency they maintain (Kumar, 1992) or the number of nodes theyvisit (Kondrak, 1994). These classi�cations have shown that the backmarking andforward checking algorithms, which were previously thought of as being fundamen-tally di�erent, actually share the same foundation (Bacchus & Grove, 1995), aswe independently rediscovered (Section 9). Despite these e�orts, there often re-mains confusion, even among experts in the �eld, about which algorithm a givendescription really implements.Considering how long the standard algorithms have existed and how widely theyare used, there have been surprisingly few published proofs of correctness. A cor-rectness criterion for search algorithms based on soundness and completeness ispresented in Kondrak (1994) and an automatic theorem prover is used to derivethe algorithms in Caldwell et al. (1997).As noted in Section 1, typical real-world search problems are often best han-dled by performing domain-speci�c constraint simpli�cation before resorting toCSP-solving. A number of uniform frameworks have been developed for expressingand simplifying common kinds of constraint problems; notable examples include



30 T. Nordin and A. Tolmachthe family of constraint logic programming (CLP) languages (Marriott & Stuckey,1998), the OPL language (Van Hentenryck, 1999), and Smith's algebraic theory ofglobal search (Pepper & Smith, 1996). For problems on discrete domains, these sys-tems ultimately rely on brute-force enumeration and testing of candidate solutionsto a residual CSP, so an e�cient CSP solver is an important system component.Integrating our Haskell-based solver library into one of these broader constraint-solving frameworks might therefore be quite useful, but we have not yet exploredthe practicality of doing so. 14 ConclusionExpressing algorithms in a lazy functional language often clari�es what an algorithmdoes and what invariants it depends on. We can modularize code that tradition-ally has been expressed in monolithic, imperative form. Experimentation is alsovery easy. New combinations of algorithms, such as minimal forward checking plusconict-directed backjumping, can be expressed in a single line of code; the equiv-alent algorithm in the imperative literature requires many lines of (mysterious) Cor pseudocode. Despite the overheads introduced by laziness and use of Haskell, wecan conduct large experiments.The major problem of working with lazy code is di�culty in predicting run-time behavior, particularly for space. Very minor code changes can often lead toasymptotic di�erences in space requirements, and the pro�ling tools available forinvestigating such problems in Hugs and ghc are inadequate.For future work, we plan to investigate further dynamic variable-reordering andvalue-ordering heuristics, which are at the core of current work in the AI searchliterature. AcknowledgementsSava Krstic gave very useful assistance in proving the lemmas of Section 7. ColinRunciman, Chris Okasaki, and an anonymous referee made many useful suggestionsfor improvements in the code and presentation. We are particularly indebted toColin Runciman for suggesting that we view the problems of failFirst0 as asymptom of inadequately lazy integer arithmetic.ReferencesBacchus, F. and Grove, A. (1995) On the forward checking algorithm. Proc. Principlesand Practice of Constraint Programming pp. 293{309.Bacchus, F. and van Run, P. (1995) Dynamic variable ordering in CSPs. Proc. Principlesand Practice of Constraint Programming pp. 258{275.Bird, R. and Wadler, P. (1988) Introduction to Functional Programming. Prentice Hall.Caldwell, J. L., Gent, I. P. and Underwood, J. (1997) Search algorithms in type theory.Theoretical Computer Science. (To appear in Special Issue on Proof Search in Type-theoretic Languages).
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